Respuesta :

Answer:

Option J 13

Step-by-step explanation:

we know that

If applying the Pythagoras Theorem

[tex]c^{2}> a^{2} +b^{2}[/tex] ----> is  an obtuse triangle

[tex]c^{2}< a^{2} +b^{2}[/tex] ----> is  an acute triangle

[tex]c^{2}= a^{2} +b^{2}[/tex] ----> is a right triangle

where

c is the greater side

Verify each case

case F) we have

[tex]c=10, a=6, b=8[/tex]

substitute

[tex]10^{2}> 6^{2} +8^{2}[/tex]

[tex]100> 100[/tex] -----> is not true

Is a right triangle

case G) we have

[tex]c=10, a=9, b=8[/tex]

substitute

[tex]10^{2}> 9^{2} +8^{2}[/tex]

[tex]100> 145[/tex] -----> is not true

Is an acute triangle

case H) we have

[tex]c=12, a=8, b=10[/tex]

substitute

[tex]12^{2}> 8^{2} +10^{2}[/tex]

[tex]144> 164[/tex] -----> is not true

Is an acute triangle

case J) we have

[tex]c=13, a=8, b=10[/tex]

substitute

[tex]13^{2}> 8^{2} +10^{2}[/tex]

[tex]169> 164[/tex] -----> is true

Is an obtuse triangle