Respuesta :

Answer:

D

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

here (h, k) = (- 3, - 6), thus

y = a(x + 3)² - 6

To find a substitute (0, 0) into the equation

0 = 9a - 6 ⇒ a = [tex]\frac{6}{9}[/tex] = [tex]\frac{2}{3}[/tex]

y = [tex]\frac{2}{3}[/tex](x + 3)² - 6 ← in vertex form

Expand (x + 3)² and distribute by [tex]\frac{2}{3}[/tex]

y = [tex]\frac{2}{3}[/tex](x² + 6x + 9) - 6

  = [tex]\frac{2}{3}[/tex] x² + 4x + 6 - 6

  = [tex]\frac{2}{3}[/tex] x² + 4x  ← in standard form