Respuesta :

Answer:

[tex]a_1=4[/tex]

[tex]a_n=(-1)^{n-1}4^n[/tex]

Step-by-step explanation:

Given a G.P series i.e geometric sequence

4, −16, 64, −256, ...

We have to find the recursive rule for the geometric sequence.

We know that  [tex]a_1[/tex] is the first term of the sequence.

Here [tex]a_1=4[/tex]

As, the nth term of Geometric progression is

[tex]a_n=ar^{n-1}[/tex] where r is the common ratio

[tex]\text{Common ratio=r=}\frac{a_2}{a_1}=\frac{-16}{4}=-4[/tex]

Hence the recursive formula is

[tex]a_n=ar^{n-1}=4(-4)^{n-1}=(-1)^{n-1}4^n[/tex]

Answer:

a1= 4  an= -4a _n-1

Step-by-step explanation:

just took the k12 test