The line with equation a + 4b = 0 coincides with the terminal side of an angle θ in standard position and cos θ>0 . What is the value of sinθ

Respuesta :

[tex]a+4b=0\implies a=-4b[/tex]

Treat [tex]a[/tex] as a function of [tex]b[/tex], so that any point on this line takes the form [tex](b,-4b)[/tex]. Suppose [tex]b[/tex] is positive; then any such point lies in the 4th quadrant, and this guarantees that the angle [tex]\theta[/tex] has a positive value for [tex]\cos\theta[/tex].

By definition of tangent and cotangent, we have

[tex]\tan\theta=\dfrac{-4b}b=-4\implies\cot\theta=-\dfrac14[/tex]

Recall the Pythagorean identity,

[tex]\cot^2\theta+1=\csc^2\theta[/tex]

In the 4th quadrant, we have [tex]\sin\theta<0[/tex], so that [tex]\csc\theta<0[/tex] as well. So when we solve for [tex]\csc\theta[/tex] above, we need to take the negative square root:

[tex]\csc\theta=-\sqrt{\cot^2\theta+1}=-\dfrac{\sqrt{17}}4[/tex]

[tex]\implies\sin\theta=-\dfrac4{\sqrt{17}}[/tex]

lemion

Answer:

[tex]-\frac{\sqrt{17}}{17}[/tex]

Step-by-step explanation:

got it wrong on the test but luckily it shows me which one is right ;P

Ver imagen lemion