Respuesta :

Answer:

3x³ - 9x² + 15x

Step-by-step explanation:

f(x) × g(x)

= 3x(x² - 3x + 5) ← distribute parenthesis by 3x

= 3x³ - 9x² + 15x

Answer:

The  product of the function f(x) = x² - 3x + 5 and g(x) =3x    is;

 3x³  - 9x² + 15x

Step-by-step explanation:

The product of the function is simply f.g(x) = f(x).g(x)

=(x²-3x+5).(3x)

We will go ahead and open the bracket by multiplying each variable in the parenthesis by 3x

(x²-3x+5).(3x)  =   3x³  - 9x² + 15x

(That is; 3x multiplied by (x²)  will give 3x²  ,      3x multiply by(-3x) will give 9x²      and 3x multiply by (5)  will give  15x )

  Then check if we can further simplify, since the variables are x³ , x² and x, we can no longer simplify.

So our final answer is  3x³  - 9x² + 15x

f.g(x) =  3x³  - 9x² + 15x

Therefore the product of the function f(x) = x² - 3x + 5 and g(x) =3x    is  3x³  - 9x² + 15x