Answer: A. 6.5
Step-by-step explanation:
Here, the given set = { 15, 19 3, 12, 17, 2, 2, 8}
Mean, [tex]\overline{ x} = \frac{15+19+3+12+17+2+2+8}{8} = \frac{78}{8} = 9.75[/tex]
Number of elements, n = 8
[tex]\frac{\sum (|x-\overline{x}|)^2}{n}=42.4375[/tex]
Thus, the standard deviation, [tex]\sigma =\frac{\sqrt{\sum(|x-\overline{x}|)^2} }{n}=\sqrt{\frac{339.5}{8}}=\sqrt{42.4375} = 6.51440711\approx 6.5[/tex]
⇒ Option A is correct.