Which expression is equivalent to?

answer
4x
steps
[tex]x+2 + (4x-\frac{x^2+6x+8}{x+4} )[/tex]
factor x^2 + 6x + 8
product=8 and sum =6
4 times 2 = 8
4 + 2= 6
(x+4)(x+2)
[tex]x+2 + (4x-\frac{(x+4)(x+2)}{x+4} )[/tex]
Cancel out x+4 at the top and bottom
x + 2 +(4x -(x+2))
Now we remove the parenthesis
x + 2+4x -x-2
4x
So the final answer is 4x
Answer:
[tex]4x[/tex]
Step-by-step explanation:
The given expression is
[tex]x+2+[4x-\frac{x^2+6x+8}{x+4} ][/tex]
Let us first of all split the middle term of the quadratic trinomial to get,
[tex]=x+2+[4x-\frac{x^2+2x+4x+8}{x+4} ][/tex]
We simplify to get;
[tex]=x+2+[4x-\frac{x(x+2)+4(x+2)}{x+4} ][/tex]
We factor to obatin,
[tex]=x+2+[4x-\frac{(x+2)(x+4)}{x+4} ][/tex]
We cancel the common factor to get,
[tex]=x+2+[4x-(x+2)][/tex]
This simplifies to,
[tex]=x+2+4x-x-2[/tex]
This gives us,
[tex]=4x[/tex]