contestada

find the smallest possible value of a whole number 'y' if it leaves a remainder of 3 when divided by 5,6 or 9.

Respuesta :

We want to find [tex]y[/tex] such that

[tex]\begin{cases}y\equiv3\pmod5\\y\equiv3\pmod6\\y\equiv3\pmod9\end{cases}[/tex]

6 and 9 are not coprime, so we split the moduli according to [tex]6=2\cdot3[/tex] and [tex]9=3^2[/tex] to get the system

[tex]\begin{cases}y\equiv3\equiv1\pmod2\\y\equiv3\equiv0\pmod3\\y\equiv3\pmod5\end{cases}[/tex]

If we take

[tex]y=1\cdot3\cdot5+0\cdot2\cdot5+3\cdot2\cdot3[/tex]

we can see that

  • taken mod 2, the last two terms vanish and we're left with [tex]15\equiv1\pmod2[/tex];
  • taken mod 3, the first and last terms vanish, and the remaining term is [tex]0\pmod3[/tex];
  • taken mod 5, the first two terms vanish, and we're left with [tex]18\equiv3\pmod5[/tex]

By the Chinese remainder theorem, we've found that any [tex]y[/tex] satisfying

[tex]y\equiv15+0+18\equiv33\pmod{2\cdot3\cdot5}\equiv3\pmod30[/tex]

will satisfy each congruence above, and that any solution of the form [tex]y=3+30n[/tex] for any integer [tex]n[/tex] will work.

The smallest possible value of these occurs for [tex]n=0[/tex], so that 3 is the least positive solution.