Determine whether the polynomial below can be factored into perfect squares. If so, factor the polynomial. Otherwise, select that it cannot be factored into a perfect square.

Answer:
A. [tex]=(9x-12)^2[/tex]
Step-by-step explanation:
We need to determine whether the polynomial [tex]81x^2-216x+144[/tex] can be factored into perfect squares. If so, factor the polynomial. Otherwise, select that it cannot be factored into a perfect square.
[tex]81x^2-216x+144[/tex]
[tex]=9(9x^2-24x+12)[/tex]
[tex]=9(9x^2-12x-12x+12)[/tex]
[tex]=9(3x(3x-4)-4(3x-4))[/tex]
[tex]=9(3x-4)(3x-4)[/tex]
[tex]=9(3x-4)^2[/tex]
[tex]=3^2(3x-4)^2[/tex]
[tex]=(3(3x-4))^2[/tex]
[tex]=(9x-12)^2[/tex]
Hence choice A. [tex]=(9x-12)^2[/tex] is correct.
Answer:
Option A. (9x - 12)²
Step-by-step explanation:
We will factorize the given polynomial into perfect square.
The polynomial is 81x²- 216x + 144
We will take 9 common out of this polynomial first
81x² - 216x + 144 = 9(9x² - 24x + 16)
= 9[(3x)² - 2(3)(4)x + 4²]
= 9[(3x - 4)²
= 3²(3x - 4)²
= (9x - 12)²
Therefore, Option A. (9x - 12)² is the answer.