Respuesta :

Answer:


Step-by-step explanation:

Given expression :


[tex]\frac{15a^8b^4}{5a^4b}[/tex]

This can be simplified to

[tex]\frac{15}{5}\frac{a^8}{a^4} \frac{b^4}{b}[/tex]

(By writing the like terms together)

Now we use the exponent law :

[tex]3.a^{8-4} b^{4-1\\} \\[/tex]

[tex]3a^4b^3[/tex]

Answer with explanation:

The expression which is equivalent to

  [tex]\Rightarrow \frac{15 a^8 \times b^4}{5 a^4 b}\\\\\Rightarrow \frac{3 \times 5 a^8 \times b^4}{5 a^4 b}\\\\\Rightarrow 3 a^{8-4} \times b^{4-1}\\\\\Rightarrow 3 a^4 \times b^3\\\\ \text{Used law of exponents}\\\\ \frac{x^a}{x^b}=x^{a-b}\\\\15=5 \times 3[/tex]

→Cancelling '5' from numerator and denominator