Respuesta :
Answer:
Step-by-step explanation:
Given expression :
[tex]\frac{15a^8b^4}{5a^4b}[/tex]
This can be simplified to
[tex]\frac{15}{5}\frac{a^8}{a^4} \frac{b^4}{b}[/tex]
(By writing the like terms together)
Now we use the exponent law :
[tex]3.a^{8-4} b^{4-1\\} \\[/tex]
[tex]3a^4b^3[/tex]
Answer with explanation:
The expression which is equivalent to
[tex]\Rightarrow \frac{15 a^8 \times b^4}{5 a^4 b}\\\\\Rightarrow \frac{3 \times 5 a^8 \times b^4}{5 a^4 b}\\\\\Rightarrow 3 a^{8-4} \times b^{4-1}\\\\\Rightarrow 3 a^4 \times b^3\\\\ \text{Used law of exponents}\\\\ \frac{x^a}{x^b}=x^{a-b}\\\\15=5 \times 3[/tex]
→Cancelling '5' from numerator and denominator