bm42400
contestada

Find n for a series for which a1= 30, d = -4, and Sn = -210.
a.
-21

b.
21

c.
-10

d.
10


Please select the best answer from the choices provided

a) A
b) B
c) C
d) D

Respuesta :

Answer:

n= 21 option B

Step-by-step explanation:

a1= 30, d = -4, and Sn = -210

WE use sum formula

we are given with a1  and d so its arithmetic sequence

the sum formula for arithmetic sequence is

[tex]S_n = \frac{n}{2}(2a_1 +(n-1)d)[/tex]

a1= 30 and d= -4 sn =-210

Plug in the values and solve for n

[tex]-210= \frac{n}{2}(2(30) +(n-1)(-4))[/tex]

[tex]-210= \frac{n}{2}(60-4n+4)[/tex]

[tex]-210= \frac{n}{2}(64-4n)[/tex]

Now distribute the fraction n/2

-210 = 32n - 2n^2

we add 210 on both sides

-2n^2 +32n +210=0

Divide whole equation by -2

[tex]n^2 - 16n - 105=0[/tex]

Now we factor left hand side

Product is -105  and sum is -16

-21 times (5) = -105

-21 + (5) = -16

(n-21) (n+5)=0

n -21 = 0 so n= 21

n +5 =0 so n = -5

number of terms cannot be negative so n= 21