Respuesta :

Answer:

vertex is (9,-21)

Step-by-step explanation:

we are given function as

[tex]f(x)=x^2-18x+60[/tex]

we can use vertex form of parabola

[tex]f(x)=a(x-h)^2+k[/tex]

So, firstly we will complete x square

[tex]f(x)=x^2-2\times x\times 9+60[/tex]

we can sue formula of square

[tex]a^2+2ab+b^2 =(a+b)^2[/tex]

[tex]f(x)=x^2-2\times x\times 9+60[/tex]

so, we will add and subtract 9^2

[tex]f(x)=x^2-2\times x\times 9+9^2+60-9^2[/tex]

[tex]f(x)=(x-9)^2+60-9^2[/tex]

[tex]f(x)=(x-9)^2-21[/tex]

now, we can compare it with vertex form of formula

[tex]f(x)=a(x-h)^2+k[/tex]

so, we get

[tex]h=9,k=-21[/tex]

So, vertex is (9,-21)

Answer:

The answer is A-The x-coordinate of the vertex is greater than the y-coordinate.

Step-by-step explanation: