Respuesta :
Answer:
vertex is (9,-21)
Step-by-step explanation:
we are given function as
[tex]f(x)=x^2-18x+60[/tex]
we can use vertex form of parabola
[tex]f(x)=a(x-h)^2+k[/tex]
So, firstly we will complete x square
[tex]f(x)=x^2-2\times x\times 9+60[/tex]
we can sue formula of square
[tex]a^2+2ab+b^2 =(a+b)^2[/tex]
[tex]f(x)=x^2-2\times x\times 9+60[/tex]
so, we will add and subtract 9^2
[tex]f(x)=x^2-2\times x\times 9+9^2+60-9^2[/tex]
[tex]f(x)=(x-9)^2+60-9^2[/tex]
[tex]f(x)=(x-9)^2-21[/tex]
now, we can compare it with vertex form of formula
[tex]f(x)=a(x-h)^2+k[/tex]
so, we get
[tex]h=9,k=-21[/tex]
So, vertex is (9,-21)
Answer:
The answer is A-The x-coordinate of the vertex is greater than the y-coordinate.
Step-by-step explanation: