Respuesta :

Answer:

The equation of the graph below is:

                        [tex]y=\cos (x+\pi)[/tex]

Step-by-step explanation:

Clearly from the graph that is provided to us we observe that when x=0 the value of the cosine function is: -1

Hence, we put x=0 in each of the given options and check which hold true.

A)

          [tex]y=\cos (x+\dfrac{\pi}{2})[/tex]

when x=0 we have:

     [tex]y=\cos (\dfrac{\pi}{2})\\\\\\y=0\neq -1[/tex]

Hence, option: A is incorrect.

B)

          [tex]y=\cos (x+2\pi)[/tex]

when x=0 we have:

     [tex]y=\cos (2\pi)\\\\\\y=1\neq -1[/tex]

Hence, option: B is incorrect.

C)

          [tex]y=\cos (x+\dfrac{\pi}{3})[/tex]

when x=0 we have:

     [tex]y=\cos (\dfrac{\pi}{3})\\\\\\y=\dfrac{1}{2}\neq -1[/tex]

Hence, option: C is incorrect.

D)

          [tex]y=\cos (x+\pi)[/tex]

when x=0 we have:

     [tex]y=\cos (\pi)\\\\\\y=-1[/tex]

Similarly by the graph of the function we see that it matches the given graph.

          Hence, option: D is correct.

Ver imagen virtuematane