Answer:
The coordinates of Y are (2,-0.2)
Step-by-step explanation:
Let the coordinates of Y be (x,y)
Since M is the midpoint of XY, so
[tex]M_{x} =\frac{X_{x}+Y_{x}}{2}[/tex]
[tex]0.5 =\frac{-1+Y_{x}}{2}[/tex]
Multiply both sides by 2
[tex]0.5*2 =\frac{-1+Y_{x}}{2}*2[/tex]
Cancel out the 2's from the top and bottom on the right side
[tex]1 =-1+Y_{x}[/tex]
Add 1 to both sides
[tex]1+1 =-1+Y_{x}+1[/tex]
Cancel out -1 and +1 on the right side
[tex]2 =Y_{x}[/tex]
Flip the sides
[tex]Y_{x}=2[/tex]
Similarly,
[tex]M_{y} =\frac{X_{y}+Y_{y}}{2}[/tex]
[tex]-1.6 =\frac{-3+Y_{y}}{2}[/tex]
Multiply both sides by 2
[tex]-1.6*2 =\frac{-3+Y_{y}}{2}*2[/tex]
Cancel out the 2's on the top and bottom of the right side
[tex]-3.2 =-3+Y_{y}[/tex]
Add 3 to both sides
[tex]-3.2+3 =-3+Y_{y}+3[/tex]
Cancel out -3 and +3 on the right side
[tex]-0.2 =Y_{y}[/tex]
Flip the sides
[tex]Y_{y}=-0.2[/tex]
So, the coordinates of Y are (2,-0.2)