Respuesta :

Answer:

The coordinates of Y are (2,-0.2)

Step-by-step explanation:

Let the coordinates of Y be (x,y)

Since M is the midpoint of XY, so

[tex]M_{x} =\frac{X_{x}+Y_{x}}{2}[/tex]

[tex]0.5 =\frac{-1+Y_{x}}{2}[/tex]

Multiply both sides by 2

[tex]0.5*2 =\frac{-1+Y_{x}}{2}*2[/tex]

Cancel out the 2's from the top and bottom on the right side

[tex]1 =-1+Y_{x}[/tex]

Add 1 to both sides

[tex]1+1 =-1+Y_{x}+1[/tex]

Cancel out -1 and +1 on the right side

[tex]2 =Y_{x}[/tex]

Flip the sides

[tex]Y_{x}=2[/tex]


Similarly,

[tex]M_{y} =\frac{X_{y}+Y_{y}}{2}[/tex]

[tex]-1.6 =\frac{-3+Y_{y}}{2}[/tex]

Multiply both sides by 2

[tex]-1.6*2 =\frac{-3+Y_{y}}{2}*2[/tex]

Cancel out the 2's on the top and bottom of the right side

[tex]-3.2 =-3+Y_{y}[/tex]

Add 3 to both sides

[tex]-3.2+3 =-3+Y_{y}+3[/tex]

Cancel out -3 and +3 on the right side

[tex]-0.2 =Y_{y}[/tex]

Flip the sides

[tex]Y_{y}=-0.2[/tex]


So, the coordinates of Y are (2,-0.2)