Respuesta :
Answer:
a.2
b.0.65
Step-by-step explanation:
Given data
0.5,2.0,2.5,1.5,1.0,1.5
Highest value=2.5
Lowest value of data=0.5
Range=Highest value-Lowest value=2.5-0.5=2
Sum of given data=0.5+2+2.5+1.5+1+1.5=9
Total number of observations=n=6
Mean=[tex]\bar{x}=\frac{sum\;of\;observation}{number\;of\;observation}[/tex]
Using the formula
[tex]\bar{x}=\frac{9}{6}=1.5[/tex]
x [tex](x-\bar x)^2[/tex]
0.5 1
2.0 0.25
2.5 1
1.5 0
1.0 0.25
1.5 0
[tex]\sum(x-\bar x)^2=1+0.25+1+0+0.25+0=2.5[/tex]
Standard deviation=[tex]\sqrt{\frac{\sum(x-\bar x)^2}{n-1}}[/tex]
S.D=[tex]\sqrt{\frac{2.5}{6}}=0.65[/tex]