Respuesta :

Answer:

option B

Step-by-step explanation:

[tex]2x^2-4x+16=0[/tex]

We need to solve this equation using quadratic formula

[tex]x= \frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

a=2, b= -4, c=16

Plug in the values in the formula

[tex]x= \frac{-(-4)+-\sqrt{(-4)^2-4(2)(16}}{2(2)}[/tex]

[tex]x= \frac{4+-\sqrt{16-128}}{4}[/tex]

[tex]x= \frac{4+-\sqrt{-112}}{4}[/tex]

Simplify the square root. the value of square root (-1) = 'i'

[tex]x= \frac{4+-4i\sqrt{7}}{4}[/tex]

Now we divide by 4

[tex]x= 1+-i\sqrt{7}[/tex]

So there are two complex roots. since the degree of polynomial is 2

Answer:

B

Step-by-step explanation:

I took the test :)