Respuesta :

Answer:

Option  B is correct.

[tex]\frac{81m^2n^5}{8}[/tex] is equivalent to [tex]\frac{(3m^{-1}n^2)^4}{(2m^{-2}n)^3}[/tex]

Step-by-step explanation:

Given expression: [tex]\frac{(3m^{-1}n^2)^4}{(2m^{-2}n)^3}[/tex]

Using exponents power:

  • [tex](ab)^n = a^nb^n[/tex]
  • [tex](a^n)^m = a^{nm}[/tex]
  • [tex]a^m \cdot a^n = a^{m+n}[/tex]

Given: [tex]\frac{(3m^{-1}n^2)^4}{(2m^{-2}n)^3}[/tex]

Apply exponent power :

⇒ [tex]\frac{3^4 (m^{-1})^4(n^2)^4}{2^3(m^{-2})^3 n^3}[/tex]

⇒ [tex]\frac{81 m^{-4}n^8}{8m^{-6}n^3} = \frac{81 m^{-4} \cdot m^6 n^8 \cdot n^{-3}}{8}[/tex]

⇒[tex]\frac{81 m^{-4+6} n^{8-3}}{8} = \frac{81 m^2 n^5}{8} = \frac{81m^2 n^5}{8}[/tex]

Therefore, the expression which is equivalent to  [tex]\frac{(3m^{-1}n^2)^4}{(2m^{-2}n)^3}[/tex] is,  [tex]\frac{81m^2 n^5}{8}[/tex]

frika

Answer:

Correct choice is B

Step-by-step explanation:

Consider expression

[tex]\dfrac{(3m^{-1}n^2)^4}{(2m^{-2}n)^3}.[/tex]

1. Simplify numerator:

[tex](3m^{-1}n^2)^4=3^4\cdot (m^{-1})^4\cdot (n^2)^4=81m^{-4}n^8.[/tex]

2. Simplify denominator:

[tex](2m^{-2}n)^3=2^3\cdot (m^{-2})^3\cdot n^3=8m^{-6}n^3.[/tex]

Then,

[tex]\dfrac{(3m^{-1}n^2)^4}{(2m^{-2}n)^3}=\dfrac{81m^{-4}n^8}{8m^{-6}n^3}=\dfrac{81}{8}m^{-4-(-6)}n^{8-3}=\dfrac{81}{8}m^2n^5.[/tex]