The table shows temperatures below freezing measured in different units. Complete the equation in standard form to represent the relationship between F, a temperature measured in degrees Fahrenheit, and C, a temperature measured in degrees Celsius. 5F + C = 39°F = °C rounded to the nearest tenth of a degree

Respuesta :

The relationship between temperatures measured in Fahrenheit, and in Celsius can be represented using an equation.

  • The equation is: [tex]5F=9C + 160[/tex].
  • The temperature in degrees Celsius when temperature in degrees Fahrenheit is 39, is 3.9

First, we calculate the slope (m) of the table

From the table (see attachment), we have:

[tex](F_1,C_1) = (-13,-25)[/tex]

[tex](F_2,C_2) = (-4,-20)[/tex]

Calculate the slope (m)

[tex]m = \frac{C_2 - C_1}{F_2-F_1}[/tex]

So, we have:

[tex]m = \frac{-20--25}{-4--13}[/tex]

[tex]m = \frac{5}{9}[/tex]

The equation is then calculated using:

[tex]C = m(F -F_1) + C_1[/tex]

So, we have:

[tex]C = \frac{5}{9}(F - -13) -25[/tex]

[tex]C = \frac{5}{9}(F +13) -25[/tex]

Multiply through by 9

[tex]9C = 5(F +13) -225[/tex]

Open bracket

[tex]9C = 5F +65 -225[/tex]

[tex]9C = 5F -160[/tex]

Rewrite as:

[tex]5F=9C + 160[/tex]

To calculate the value of C for F = 39, we have:

[tex]C = \frac{5}{9}(F +13) -25[/tex]

[tex]C = \frac 59(39 + 13) - 25[/tex]

[tex]C = \frac 59(52) - 25[/tex]

[tex]C = \frac{260}{9} - 25[/tex]

[tex]C = \frac{260-25\times 9}{9}[/tex]

[tex]C = \frac{35}{9}[/tex]

[tex]C = 3.9[/tex]

Read more about equations and tables at:

https://brainly.com/question/16911650

Ver imagen MrRoyal