The relationship between temperatures measured in Fahrenheit, and in Celsius can be represented using an equation.
First, we calculate the slope (m) of the table
From the table (see attachment), we have:
[tex](F_1,C_1) = (-13,-25)[/tex]
[tex](F_2,C_2) = (-4,-20)[/tex]
Calculate the slope (m)
[tex]m = \frac{C_2 - C_1}{F_2-F_1}[/tex]
So, we have:
[tex]m = \frac{-20--25}{-4--13}[/tex]
[tex]m = \frac{5}{9}[/tex]
The equation is then calculated using:
[tex]C = m(F -F_1) + C_1[/tex]
So, we have:
[tex]C = \frac{5}{9}(F - -13) -25[/tex]
[tex]C = \frac{5}{9}(F +13) -25[/tex]
Multiply through by 9
[tex]9C = 5(F +13) -225[/tex]
Open bracket
[tex]9C = 5F +65 -225[/tex]
[tex]9C = 5F -160[/tex]
Rewrite as:
[tex]5F=9C + 160[/tex]
To calculate the value of C for F = 39, we have:
[tex]C = \frac{5}{9}(F +13) -25[/tex]
[tex]C = \frac 59(39 + 13) - 25[/tex]
[tex]C = \frac 59(52) - 25[/tex]
[tex]C = \frac{260}{9} - 25[/tex]
[tex]C = \frac{260-25\times 9}{9}[/tex]
[tex]C = \frac{35}{9}[/tex]
[tex]C = 3.9[/tex]
Read more about equations and tables at:
https://brainly.com/question/16911650