Solve the system using matrices. Gaussian elimination with back-substitution or Gauss-Jordan elimination.
X + 5y= 0
X + 6y + z = 1
2x - y - z= -21

The solution set is _,_,_ si

Solve the system using matrices Gaussian elimination with backsubstitution or GaussJordan elimination X 5y 0 X 6y z 1 2x y z 21 The solution set is si class=

Respuesta :

In augmented matrix form, the system is

[tex]\begin{bmatrix}1&5&0&0\\1&6&1&1\\2&-1&-1&-21\end{bmatrix}[/tex]

Subtract row 1 from row 2, and subtract 2 times row 1 from row 3:

[tex]\begin{bmatrix}1&5&0&0\\0&1&1&1\\0&-11&-1&-21\end{bmatrix}[/tex]

Add 11 times row 1 to row 3:

[tex]\begin{bmatrix}1&5&0&0\\0&1&1&1\\0&0&10&-10\end{bmatrix}[/tex]

Divide through row 3 by 10:

[tex]\begin{bmatrix}1&5&0&0\\0&1&1&1\\0&0&1&-1\end{bmatrix}[/tex]

Row 3 says [tex]z=-1[/tex]. Substituting into row 2, we get [tex]y+z=1\implies y=2[/tex]. Substituting both into row 1, we get [tex]x+5y=0\implies x=-10[/tex]. So the solution is the single ordered triplet (-10, 2, -1).