Respuesta :

I believe the equation is

[tex]1=(1-\sin^2\theta)(1+\tan^2\theta)[/tex]

which is true for all [tex]\theta[/tex], so I guess you're supposed to show why (i.e. establish the identity). Recall that

[tex]\cos^2\theta+\sin^2\theta=1[/tex]

from which we can derive

[tex]\cos^2\theta=1-\sin^2\theta[/tex]

[tex]1+\tan^2\theta=\sec^2\theta[/tex]

So the original equation is equivalent to

[tex]1=\cos^2\theta\sec^2\theta[/tex]

and since [tex]\sec\theta=\dfrac1{\cos\theta}[/tex], the right side reduces to 1.