Respuesta :

sqrt(75) + sqrt(18) - sqrt(27)

sqrt(25*3) + sqrt(9*2) - sqrt(9*3)

sqrt(25) sqrt(3) + sqrt(9)sqrt(2) - sqrt(9)sqrt(3)

5sqrt(3) +3sqrt(2) -3sqrt(3)

5sqrt(3) - 3sqrt(3) + 3 sqrt(2)

2 sqrt(3) + 3 sqrt(2)


2 answers? maybe 2 different forms?

remember that [tex]a^\frac{m}{n}=\sqrt[n]{a^m}[/tex]

also, that [tex]\sqrt{ab}=(\sqrt{a})(\sqrt{b})[/tex]

and [tex]\sqrt{a^2}=a[/tex]

so factor each

75=3*5*5

18=2*3*3

27=3*3*3


[tex]\sqrt{75}+\sqrt{18}-\sqrt{27}=[/tex]

[tex]\sqrt{(3)(5)(5)}+\sqrt{(2)(3)(3)}-\sqrt{(3)(3)(3)}=[/tex]

[tex](\sqrt{3})(\sqrt{5})(\sqrt{5})+(\sqrt{2})(\sqrt{3})(\sqrt{3})-(\sqrt{3})(\sqrt{3})(\sqrt{3})=[/tex]

[tex](\sqrt{3})(5)+(\sqrt{2})(3)-(3)(\sqrt{3})=[/tex]

[tex]5\sqrt{3}-3\sqrt{3}+3\sqrt{2}=[/tex]

[tex]2\sqrt{3}+3\sqrt{2}[/tex]

not sure what the other solution is

you could go to back and factor out the √3 back there to get

[tex](\sqrt{3})(2+\sqrt{6})[/tex] but that's all I can see