Respuesta :

gmany

[tex]y=a^x\\\\growth\ for\ a > 1\\decay\ for\ 0 < a < 1\\\\We\ have:\\\\y=100\left(1-\dfrac{1}{2}\right)^t=100\left(\dfrac{1}{2}\right)^t\to a=\dfrac{1}{2} < 1-\boxed{Decay}\\\\y=0.1(1.25)^t\to a=1.25 > 1-\boxed{Growth}\\\\y=426(0.98)^t\to a=0.98 < 1-\boxed{Decay}\\\\y=2050\left(\dfrac{1}{2}\right)t\to a=\dfrac{1}{2} < 1-\boxed{Decay}\\\\y=\left(\left(1-0.03\right)^{\frac{1}{2}}\right)^{2t}=(0.97)^{\frac{1}{2}\cdot2t}=(0.97)^t\to a=0.97 < 1-\boxed{Decay}[/tex]