Respuesta :

Answers: x = [tex]\frac{25}{4}[/tex] , arc AB = 110°, x = [tex]\frac{4}{3}[/tex], arc AB = 56°

Explanation:

Set up the proportion then cross multiply and solve for x.

[tex]\frac{MQ}{QP} = \frac{MN}{NO}[/tex]

[tex]\frac{15}{x} = \frac{12}{5}[/tex]

 15(5) = x(12)

   75   = 12x

  ÷12   ÷12  

   [tex]\frac{75}{12}[/tex]    =  x

   [tex]\frac{25}{4}[/tex]    =  x        reduced

****************************************************************************

arc ADB + arc AB = 360°

    250°  +    AB    = 360°

  -250°                 -250°

                    AB  =   110°

****************************************************************************

Set up the proportion then cross multiply and solve for x.

[tex]\frac{MQ}{QP} = \frac{MN}{NO}[/tex]

[tex]\frac{4}{x} = \frac{6}{2}[/tex]

 4(2) = x(6)

   8   = 6x

 ÷6    ÷6  

   [tex]\frac{8}{6}[/tex]    =  x

   [tex]\frac{4}{3}[/tex]    =  x        reduced

****************************************************************************

Central angle = measure of the arc

∠AB = arc AB

56° = arc AB