Respuesta :

frika

Denote the area of quadilateral MBQP as A, the area of the triangle MBP as [tex]A_1[/tex] and the area of the triangle BPQ as [tex]A_2.[/tex]

Note that:

1.

[tex]A_{\triangle CMB}=\dfrac{1}{3}A_{\triangle ABC}=\dfrac{1}{3}\cdot 30=10\ cm^2.[/tex]

2.

[tex]A_{\triangle CPQ}=A_2.[/tex]

3.

[tex]A_{\triangle ABQ}=\dfrac{1}{2}A_{\triangle ABC}=\dfrac{1}{2}\cdot 30=15\ cm^2.[/tex]

4.

[tex]A_{\triangle APM}=2A_1.[/tex]

Now

[tex]A+A_{\triangle CPQ}=A_{\triangle CMB}\Rightarrow A+A_2=10\ cm^2.[/tex]

[tex]A+A_{\triangle AMP}=A_{\triangle ABQ}\Rightarrow A+2A_1=15\ cm^2.[/tex]

You get the system of three equations:

[tex]\left\{\begin{array}{l}A=A_1+A_2\\A+A_2=10\\A+2A_1=15\end{array}\right..[/tex]

Substitute the first equation into the last two:

[tex]\left\{\begin{array}{l}A_1+A_2+A_2=10\\A_1+A_2+2A_1=15\end{array}\right.\Rightarrow \left\{\begin{array}{l}A_1+2A_2=10\\A_2+3A_1=15\end{array}\right..[/tex]

From the first equation [tex]A_1=10-2A_2[/tex] and then

[tex]A_2+3(10-2A_2)=15,\\ \\A_2+30-6A_2=15,\\ \\-5A_2=-15,\\ \\A_2=3\ cm^2.[/tex]

Thus,

[tex]A_1=10-2\cdot 3=10-6=4\ cm^2[/tex]

and

[tex]A=4+3=7\ cm^2.[/tex]

Answer: 7 sq. cm