Respuesta :
Answer:
B. y=x−2 for x≥3 and y=−x+4 for x<3
Explanation:
Answer choices B and C are the only ones with the breakpoint at x=3, where the absolute value function has an argument of zero.
Of those, answer choice B is the only one with a positive slope for x > 3, so is the only correct choice.

Answer:
B.[tex]y= x-2\; for\; x\geq3\; and\; y=-x+4 \;for \;x<3[/tex]
Step-by-step explanation:
Given function
[tex]\mid{ x-3}\mid=y-1[/tex]
We know that the break of modulus function
f(x)=[tex]\mid{x-1} \mid[/tex]
f(x)
= x-1 for [tex]x\geq 1[/tex]
And [tex]f(x)=-(x-1)\; for\;x<1[/tex]
Therefore, similarly we break the modulus function in the same way
[tex]y-1=\mid{x-3}\mid[/tex]
we can write as
[tex]y-1= x-3 for\; x\geq3[/tex]
Therefore ,[tex]y=x-2 \;for\;x\geq 3[/tex] ( by using subtraction property of equality )
And [tex]y-1=-x+3\;for\;x<3[/tex]
We can write as [tex]y=-x+4 \;for\; x<3[/tex] (By simplication)
Hence, B.[tex]y=x-2\; for\; x\geq 3\; and \; y=-x+4\; for\; x<3[/tex] is correct option .