How do I verify #15 using fundamental trig identities?

We start with the more complicated side which is the left side, and show that, on using some trigonometric identities, we will get the term on the right side .
[tex]\frac{sin \theta + tan \theta}{1+cos \theta}[/tex]
Using Quotient identity for tangent function, we will get
[tex]\frac{sin \theta+ \frac{sin \theta}{cos \theta}}{1+cos \theta}[/tex]
[tex]\frac{sin \theta cos \theta + sin \theta}{cos \theta(1+cos \theta)}[/tex]
Taking out sine function from the numerator
[tex]=\frac{sin \theta(1+cos \theta)}{cos \theta(1+cos \theta)}[/tex]
Cancelling the common term of numerator and denominator
[tex]=\frac{sin \theta}{cos \theta} = tan \theta[/tex]