Respuesta :

Answer: sin [tex]\frac{2\pi}{5}[/tex]

Step-by-step explanation:

The cofunction is the complement, which means their sum equals [tex]\frac{\pi}{2}[/tex] and the function switches. sin⇄cos, tan⇄cot, csc⇄sec.

cos [tex]\frac{\pi}{10}[/tex]

[tex]\frac{\pi}{2}[/tex] - [tex]\frac{\pi}{10}[/tex]

= [tex]\frac{\pi}{2}(\frac{5}{5})[/tex] - [tex]\frac{\pi}{10}[/tex]

= [tex]\frac{5\pi-\pi}{10}[/tex]

= [tex]\frac{4\pi}{10}[/tex]

= [tex]\frac{2\pi}{5}[/tex]

**********************************************************************

csc θ = 6

csc = [tex]\frac{hypotenuse}{opposite}[/tex]

  • opposite = 1
  • use Pythagorean Theorem to find adjacent = [tex]\sqrt{35}[/tex]
  • hypotenuse = 6

1² + (adjacent)² = 6²

      (adjacent)² = 35

      adjacent = [tex]\sqrt{35}[/tex]

sin θ = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{1}{6}[/tex]

cos θ = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{\sqrt{35}}{6}[/tex]

tan θ = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{1}{\sqrt{35}}[/tex] = [tex]\frac{\sqrt{35}}{35}[/tex]

sec θ = [tex]\frac{hypotenuse}{adjacent}[/tex] = [tex]\frac{6}{\sqrt{35}}[/tex] = [tex]\frac{6\sqrt{35}}{35}[/tex]

cot θ = [tex]\frac{adjacent}{opposite}[/tex] = [tex]\frac{\sqrt{35}}{1}[/tex] = [tex]\sqrt{35}[/tex]