PLEASE HELP ME FIGURE THIS OUT 1.



Answer: [tex]\frac{7\pi}{12}[/tex], II, [tex]\frac{5\pi}{12}[/tex]
Step-by-step explanation:
a) [tex]-\frac{41\pi}{12}[/tex]
Add 2π until you receive a positive number. 2π = [tex]\frac{24\pi}{12}[/tex]
[tex]-\frac{41\pi}{12}[/tex] + [tex]\frac{24\pi}{12}[/tex] = [tex]-\frac{17\pi}{12}[/tex]
[tex]-\frac{17\pi}{12}[/tex] + [tex]\frac{24\pi}{12}[/tex] = [tex]\frac{7\pi}{12}[/tex]
b) [tex]\frac{\pi}{2}[/tex] < [tex]\frac{7\pi}{12}[/tex] < π So it is located in Quadrant II
c) It is closest to the x-axis at π. π - [tex]\frac{7\pi}{12}[/tex] = [tex]\frac{5\pi}{12}[/tex]
**************************************************************************
Answer: π, (-1, 0), A, 0
Step-by-step explanation:
a) -7π
Add 2π until you receive a positive number.
-7π + 2π = -5π
-5π + 2π = -3π
-3π + 2π = -π
-π + 2π = π
b) Look at the Unit Circle to find that π is located at (-1, 0)
c) x = -1, y = 0, r = 1
sin θ = [tex]\frac{y}{r}[/tex]
d) sin θ = [tex]\frac{y}{r}[/tex] = [tex]\frac{0}{1}[/tex] = 0
**************************************************************************
Answer: 7π
Step-by-step explanation:
s = rθ
= 35[tex](\frac{\pi}{5})[/tex]
= 7π