Respuesta :

Answer: [tex]\frac{7\pi}{12}[/tex], II, [tex]\frac{5\pi}{12}[/tex]

Step-by-step explanation:

a) [tex]-\frac{41\pi}{12}[/tex]

Add 2π until you receive a positive number. 2π = [tex]\frac{24\pi}{12}[/tex]

[tex]-\frac{41\pi}{12}[/tex] + [tex]\frac{24\pi}{12}[/tex] = [tex]-\frac{17\pi}{12}[/tex]

[tex]-\frac{17\pi}{12}[/tex] + [tex]\frac{24\pi}{12}[/tex] = [tex]\frac{7\pi}{12}[/tex]

b) [tex]\frac{\pi}{2}[/tex] < [tex]\frac{7\pi}{12}[/tex] < π So it is located in Quadrant II

c) It is closest to the x-axis at π.  π - [tex]\frac{7\pi}{12}[/tex]  = [tex]\frac{5\pi}{12}[/tex]

**************************************************************************

Answer: π, (-1, 0), A, 0

Step-by-step explanation:

a) -7π

Add 2π until you receive a positive number.

-7π + 2π = -5π

-5π + 2π = -3π

-3π + 2π = -π

-π + 2π = π

b) Look at the Unit Circle to find that π is located at (-1, 0)

c) x = -1, y = 0, r = 1

sin θ = [tex]\frac{y}{r}[/tex]

d) sin θ = [tex]\frac{y}{r}[/tex] = [tex]\frac{0}{1}[/tex] = 0

**************************************************************************

Answer: 7π

Step-by-step explanation:

s = rθ

 = 35[tex](\frac{\pi}{5})[/tex]

 = 7π