Respuesta :

we have

64^{\frac{1}{4}}

we know that

64=2^{6}= 2^{2}*2^{4}

so

64^{\frac{1}{4}}=\sqrt[4]{64} \\ \\\sqrt[4]{64} =\sqrt[4]{2^{2}*2^{4}}

\sqrt[4]{2^{2}*2^{4}}=2\sqrt[4]{2^{2}}= 2\sqrt[4]{4}

therefore

the answer is the option  

2\sqrt[4]{4}

we can use properties o exponents

[tex](a^b)^c=a^{bc}[/tex]

and

[tex]a^\frac{m}{n}=\sqrt[n]{a^m}[/tex]


i we factor 64

62=2*2*2*2*2*2=2⁶

so

[tex]64^\frac{1}{4}=[/tex]

[tex](2^6)^\frac{1}{4}=[/tex]

[tex]2^\frac{6}{4}=[/tex]

[tex]2^\frac{3}{2}=[/tex]

[tex]\sqrt[2]{2^3}=[/tex]

[tex]2\sqrt{2}[/tex]

hopefully that's one o the option