Respuesta :
we have
64^{\frac{1}{4}}
we know that
64=2^{6}= 2^{2}*2^{4}
so
64^{\frac{1}{4}}=\sqrt[4]{64} \\ \\\sqrt[4]{64} =\sqrt[4]{2^{2}*2^{4}}
\sqrt[4]{2^{2}*2^{4}}=2\sqrt[4]{2^{2}}= 2\sqrt[4]{4}
therefore
the answer is the option
2\sqrt[4]{4}
we can use properties o exponents
[tex](a^b)^c=a^{bc}[/tex]
and
[tex]a^\frac{m}{n}=\sqrt[n]{a^m}[/tex]
i we factor 64
62=2*2*2*2*2*2=2⁶
so
[tex]64^\frac{1}{4}=[/tex]
[tex](2^6)^\frac{1}{4}=[/tex]
[tex]2^\frac{6}{4}=[/tex]
[tex]2^\frac{3}{2}=[/tex]
[tex]\sqrt[2]{2^3}=[/tex]
[tex]2\sqrt{2}[/tex]
hopefully that's one o the option