Respuesta :
When you draw a card, the possibility of drawing an ace is 4/52 cards, given that the 4 is the number of aces that are in the deck. If you simplify this, it would be 1/13. The probability of drawing two aces is around 0.45%. Hope I helped! If not, then at least I tried, right?
Answer with explanation:
Number of cards in the deck=52
Number of Aces in the deck of cards =4
Probability of an event
[tex]=\frac{\text{Total favorable outcome}}{\text{Total Possible outcome}}[/tex]
Probability of drawing an ace
[tex]=\frac{_{1}^{4}\textrm{C}}{_{1}^{52}\textrm{C}}\\\\=\frac{4}{52}\\\\=\frac{1}{13}[/tex]
Probability of not drawing an ace
[tex]=1-\frac{1}{13}\\\\=\frac{12}{13}[/tex]
Probability that Luca will draw an ace in the first nine attempts
[tex]=S+FS+FFS+FFFS+FFFFS+FFFFFS+FFFFFFS+FFFFFFFS+FFFFFFFFS\\\\=\frac{1}{13}+\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{1}{13}+\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{12}{13}*\frac{1}{13}\\\\=\frac{1}{13}*[1+\frac{12}{13}+(\frac{12}{13})^2+(\frac{12}{13})^3+(\frac{12}{13})^4+(\frac{12}{13})^5+(\frac{12}{13})^6+(\frac{12}{13})^7+(\frac{12}{13})^8]\\\\=\frac{1}{13}*[\frac{1-(\frac{12}{13})^9}{1-\frac{12}{13}}]\\\\=\frac{1}{13}*[\frac{1-(\frac{12}{13})^9}{\frac{1}{13}}]\\\\=1-(\frac{12}{13})^9\\\\=1-0.4866\\\\=0.5134{\text{approx}}[/tex]