Respuesta :

frika

The exponential regression equation in general has form [tex]y=a\cdot b^x.[/tex]

The attached graph shows the exponential curve that best fits given data. From the graph it is seen that

[tex]a\approx 0.0038,\\ \\b\approx 2.0223,[/tex]

then the exponential function is

[tex]y=0.0038\cdot (2.0223)^x.[/tex]

When x=15,

[tex]y=0.0038\cdot (2.0223)^{15}\approx 147.[/tex]

Answer: 147

Ver imagen frika
fichoh

Using the exponential regression calculator, the exponential model created by the data is [tex] y = 0.0034(2.040)^{x} [/tex] and the estimated y value at x = 15 is 149.944

Given the data:

  • ( 10 , 4 ) , ( 12 , 20 ) , ( 13 , 35 ) , and ( 16 , 300 )

Using technology, the exponential model obtained using the data is :

  • [tex] y = 0.0034(2.040)^{x} [/tex]

Using the model, the predicted value of y at x = 15 :

  • [tex] y = 0.0034(2.040)^{15} [/tex]

  • y = 149.944

Therefore, the estimated y value is 149.944

Learn more : https://brainly.com/question/18796573

Ver imagen fichoh