Respuesta :

compound interest equation for annually compounded

[tex]A=P(1+r)^t[/tex]

A=final amount

P=principal

r=rate in decimal

t=time in years


given that

A=1550

P=1000

r=5.5%=0.055

find t


[tex]1550=1000(1+0.055)^t[/tex]

divide both sides by 1000

[tex]1.55=1.055^t[/tex]

take ln of both sides

[tex]ln(1.55)=ln(1.055^t)[/tex]

use ln rule [tex]ln(a^b)=b(ln(a))[/tex]

[tex]ln(1.55)=t(ln(1.055))[/tex]

divide both sides by ln(1.055)

[tex]\frac{ln(1.55)}{ln(1.055)}=t[/tex]

using a calculator, we get that t=8.18544 yrs

so about 8.2yrs