Which of these exponential functions goes through the points (1, 12) and (2, 36)?


A.) f(x) = 4(3)−x

B.) f(x) = 3(4)−x

C.) f(x) = 3(4)x

D.) f(x) = 4(3)x

Respuesta :

Answer:

Option D is correct

The exponential function is: [tex]f(x)= 4(3)^x[/tex]

Explanation:

An exponential function is in the general form is:

[tex]f(x) =ab^x[/tex].                ......[1]

Given the points  (1,12) and (2, 36).

For the point (1,12),

Plug in x = 1 and y =12 in [1]; we get

[tex]12=ab^1[/tex] or

12 =ab                  ......[2]

Now, for the point (2, 36);

Plug in x= 2 and y =36 in [1];

[tex]36=ab^2[/tex]                   ......[3]

Divide equation [3] by equation [2], we have

[tex]\frac{36}{12}= \frac{ab^2}{ab}[/tex]

Simplify:

[tex]3= b[/tex]

Substitute the value of b in equation [2], to solve for a;

[tex]12 =a\cdot 3[/tex]

Divide both side by 3 we get;

[tex]\frac{12}{3}= \frac{3a}{3}[/tex]

simplify:

[tex]4 =a[/tex]

Then, put these a and b values in [1]; we get

The exponential function as: [tex]f(x)= 4(3)^x[/tex]