Respuesta :

we can use pythagorean identieis

remember that [tex]sin^2(x)+cos^2(x)=1[/tex]

also remember that [tex]tan(x)=\frac{sin(x)}{cos{x}}[/tex] and [tex]sec(x)=\frac{1}{cos(x)}[/tex]

so if we take [tex]sin^2(x)+cos^2(x)=1[/tex] and divide both sides by [tex]cos^2(x)[/tex] we get

[tex]\frac{sin^2(x)}{cos^2(x)}+\frac{cos^2(x)}{cos^2(x)}=\frac{1}{cos^2(x)}[/tex]

[tex](\frac{sin(x)}{cos(x)})^2+1=(\frac{1}{cos(x)})^2[/tex]

[tex]tan^2(x)+1=sec^2(x)[/tex]

subtracting [tex]1+sec^2(x)[/tex] from both sides

[tex]tan^2(x)-sec^2(x)=-1[/tex]

now subsitute into original problem


[tex]\frac{tan^2(x)-sec^2(x)}{sin^2(x)+cos^2(x)}=[/tex]

[tex]\frac{-1}{1}=[/tex]

[tex]-1[/tex]

the answer is -1