Respuesta :

9514 1404 393

Answer:

  4x +3/2y

Step-by-step explanation:

The perimeter is twice the sum of length and width. We can use this to find the width.

  P = 2(L+W)

  15x +17y = 2(7/2x +7y +W)

  15x +17y = 7x +14y +2W . . . . . . eliminate parentheses

  8x +3y = 2W . . . . . . . . . . . . . . . subtract 7x +14y

  W = 4x +3/2y . . . . . . . divide by 2

The width of the rectangle is 4x +3/2y.

Space

Answer:

w = 4x + 3/2y

Step-by-step explanation:

Perimeter of a Rectangle: P = 2w + 2l

Step 1: Define

P = 15x + 17y

l = 7/2x + 7y

w = unknown

Step 2: Solve for w

  1. Substitute: 15x + 17y = 2w + 2(7/2x + 7y)
  2. Distribute 2: 15x + 17y = 2w + 7x + 14y
  3. Subtract 7x on both sides: 8x + 17y = 2w + 14y
  4. Subtract 14y on both sides: 8x + 3y = 2w
  5. Divide both sides by 2: 4x + 3/2y = w
  6. Rewrite: w = 4x + 3/2y