If the percentage ionization of an 0.10 M acid is 3.0%, what is its acid dissociation constant?
0.003
9 x 10-5
.0009
.009

Respuesta :

Answer:- [tex]Ka=9*10^-^5[/tex]

Solution:- percent ionization = [tex](\frac{x}{c})100[/tex]

where, [tex]x[/tex] is the equilibrium concentration of product ion and c is the initial concentration of the acid.

Let's plug in the values in the formula:

[tex]3.0=(\frac{x}{0.10})100[/tex]

[tex]x=\frac{3.0*0.10}{100}[/tex]

[tex]x=0.003[/tex]

In general, the acid is represented as HA, the ice table is shown as:

    [tex]HA(aq)      \leftrightharpoons H^+(aq)   +A^-(aq)[/tex]

I            0.10                                             0             0

C           -X                                               +X             +X

E         (0.10 - X)                                         X               X

where X is the change in concentration that we already have find out using percentage ionization formula.

[tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]

Let's plug in the values in it:

[tex]Ka=\frac{(0.003)^2}{(0.1-0.003)}[/tex]

0.003 is almost negligible as compared to 0.10, so (0.10 - 0.003) could be taken as 0.10.

[tex]Ka=\frac{(0.003)^2}{(0.01)}[/tex]

[tex]Ka=9*10^-^5[/tex]

Second choice is the right one.