The pH of 0.10 M solution of an acid is 6. What is the acid dissociation constant of the acid?
10-11
10-12
10-5
10-6

Respuesta :

Answer: Dissociation constant of the acid is [tex]10^{-11}[/tex].

Explanation: Assuming the acid to be monoprotic, the reaction follows:

                         [tex]HA\rightleftharpoons H^++A^-[/tex]

pH of the solution = 6

and we know that

[tex]pH=-log([H^+])[/tex]

[tex][H^+]=antilog(-pH)[/tex]

[tex][H^+]=antilog(-6)=10^{-6}M[/tex]

As HA ionizes into its ions in 1 : 1 ratio, hence

[tex][H^+]=[A^-]=10^{-6}M[/tex]

As the reaction proceeds, the concentration of acid decreases as it ionizes into its ions, hence the decreases concentration of acid at equilibrium will be:

[tex][HA]=[HA]-[H^+][/tex]

[tex][HA]=0.1M-10^{-6}M[/tex]

[tex][HA]=0.09999M[/tex]

Dissociation Constant of acid, [tex]K_a[/tex] is given as:

[tex]K_a=\frac{[A^-][H^+]}{HA}[/tex]

Putting values of [tex][H^+],[A^-]\text{ and }[HA][/tex] in the above equation, we get

[tex]K_a=\frac{(10^{-6}M).(10^{-6}M)}{0.09999M}[/tex]

[tex]K_a=1.0001\times 10^{-11}M[/tex]

Rounding it of to one significant figure, we get

[tex]K_a=1.0\times 10^{-11}M\approx 10^{-11}M[/tex]