Using similar triangles if KLM~ PQR with a scale factor of 3:5, find the perimeter of PQR (With work please)

Answer: 55 units
Step-by-step explanation:
Given: ΔKLM~ ΔPQR with a scale factor of 3:5
⇒[tex]\frac{sides\ of\ \triangle{KLM}}{sides\ of\ \triangle{PQR}}=\frac{3}{5}[/tex]
Also ΔKLM~ ΔPQR and the corresponding sides of similar triangles are proportional therefore,
[tex]\\\Rightarrow\frac{KL}{PQ}=\frac{LM}{QR}=\frac{KM}{PR}=\frac{3}{5}[/tex]
[tex]\\\Rightarrow PQ=\frac{KL\times5}{3}=\frac{6\times5}{3}=10[/tex]
Similarly,
[tex]QR=\frac{LM\times5}{3}=\frac{15\times5}{3}=25\\PR=\frac{KM\times5}{3}=\frac{12\times5}{3}=20[/tex]
Now, Perimeter of ΔPQR=[tex]PQ+QR+PR=25+20+10=55\ units[/tex]
Triangles KLM and PQR are similar triangles, but they are not congruent
The perimeter of triangle PQR is 55 units.
From the question, we have:
[tex]\mathbf{KL = 6}[/tex]
[tex]\mathbf{KM = 12}\\[/tex]
[tex]\mathbf{LM = 15}[/tex]
Because the scale ratio is given as 3:5.
So, we have:
[tex]\mathbf{KL: PQ = 3:5}[/tex]
[tex]\mathbf{KM:OP = 3 : 5}[/tex]
[tex]\mathbf{LM : QR = 3 : 5}[/tex]
Substitute 6 for KL in [tex]\mathbf{KL: PQ = 3:5}[/tex]
[tex]\mathbf{6: PQ = 3:5}[/tex]
Express as fractions
[tex]\mathbf{\frac{PQ}{6} = \frac{5}{3}}[/tex]
Multiply both sides by 6
[tex]\mathbf{PQ = \frac{5}{3} \times 6}[/tex]
[tex]\mathbf{PQ = 5 \times 2}[/tex]
[tex]\mathbf{PQ = 10}[/tex]
Substitute 12 for KM in [tex]\mathbf{KM:OP = 3 : 5}[/tex]
[tex]\mathbf{12:OP = 3 : 5}[/tex]
Express as fractions
[tex]\mathbf{\frac{OP}{12} = \frac{5}{3} }[/tex]
Multiply both sides by 12
[tex]\mathbf{OP = \frac{5}{3} \times 12}[/tex]
[tex]\mathbf{OP = 5 \times 4}[/tex]
[tex]\mathbf{OP = 20}[/tex]
Substitute 15 for LM in [tex]\mathbf{LM : QR = 3 : 5}[/tex]
[tex]\mathbf{15 : QR = 3 : 5}[/tex]
Express as fractions
[tex]\mathbf{\frac{QR}{15} = \frac{5}{3}}[/tex]
Multiply both sides by 15
[tex]\mathbf{QR = \frac{5}{3} \times 15}[/tex]
[tex]\mathbf{QR = 5 \times 5}[/tex]
[tex]\mathbf{QR = 25}[/tex]
So, we have:
[tex]\mathbf{PQ = 10}[/tex]
[tex]\mathbf{OP = 20}[/tex]
[tex]\mathbf{QR = 25}[/tex]
The perimeter of PQR is then calculated as:
[tex]\mathbf{Perimeter = PQ + OP + QR}[/tex]
[tex]\mathbf{Perimeter = 10 + 20 + 25}[/tex]
[tex]\mathbf{Perimeter = 55}[/tex]
Hence, the perimeter of triangle PQR is 55 units.
Read more about scale factors at:
https://brainly.com/question/14793702