Respuesta :
x²+20=0
x=±√(-80)/2
x=±4i√5/2=2i√5
factorised it is then
(x+2i√5)*(x-2i√5)
x=±√(-80)/2
x=±4i√5/2=2i√5
factorised it is then
(x+2i√5)*(x-2i√5)
Answer:
[tex]x^2+20=(x-2\sqrt{5}i)(x+2\sqrt{5}i)[/tex]
Step-by-step explanation:
Given : Expression [tex]x^2+20[/tex]
To find : Factor the expression over the complex numbers ?
Solution :
To factor we equate the expression to zero.
[tex]x^2+20=0[/tex]
Subtract 20 both side,
[tex]x^2+20-20=-20[/tex]
[tex]x^2=-20[/tex]
Taking root both side,
[tex]x=\sqrt{-20}[/tex]
[tex]x=\pm 2\sqrt{5}i[/tex]
The factor of the expression is [tex]x^2+20=(x-2\sqrt{5}i)(x+2\sqrt{5}i)[/tex]