Respuesta :

x²+20=0
x=±√(-80)/2
x=±4i√5/2=2i√5

factorised it is then
(x+2i√5)*(x-2i√5)

Answer:

[tex]x^2+20=(x-2\sqrt{5}i)(x+2\sqrt{5}i)[/tex]  

Step-by-step explanation:

Given : Expression [tex]x^2+20[/tex]

To find : Factor the expression over the complex numbers ?

Solution :

To factor we equate the expression to zero.

[tex]x^2+20=0[/tex]

Subtract 20 both side,

[tex]x^2+20-20=-20[/tex]

[tex]x^2=-20[/tex]

Taking root both side,

[tex]x=\sqrt{-20}[/tex]

[tex]x=\pm 2\sqrt{5}i[/tex]

The factor of the expression is [tex]x^2+20=(x-2\sqrt{5}i)(x+2\sqrt{5}i)[/tex]