In a population distribution, a score of x=57 corresponds to z=-0.25 and a score of x=87 corresponds to z=1.25. Find the mean and standard deviation for the population.

Respuesta :

frika

Here is dependence between scores and x-values:

[tex]Z_i=\dfrac{X_i-\mu}{\sigma},[/tex]

where [tex]\mu[/tex] is the mean, [tex]\sigma[/tex] is standard deviation and i changes from 1 to 2.

1. When i=1, [tex]Z_1=-0.25,\ X_1=57,[/tex] then

[tex]-0.25=\dfrac{57-\mu}{\sigma}.[/tex]

2. When i=2, [tex]Z_2=1.25,\ X_2=87,[/tex] then

[tex]1.25=\dfrac{87-\mu}{\sigma}.[/tex]

Now solve the system of equations:

[tex]\left\{\begin{array}{l}-0.25=\dfrac{57-\mu}{\sigma}\\ \\1.25=\dfrac{87-\mu}{\sigma}.\end{array}\right.[/tex]

[tex]\left\{\begin{array}{l}-0.25\sigma=57-\mu\\ \\1.25\sigma=87-\mu.\end{array}\right.[/tex]

Subtract first equation from the second:

[tex]1.25\sigma-(-0.25\sigma)=87-57,\\ \\1.5\sigma=30,\\ \\\sigma=20.[/tex]

Then

[tex]1.25=\dfrac{87-\mu}{20},\\ \\87-\mu=25,\\ \\\mu=87-25=62.[/tex]

Answer: the mean is 62, the standard deviation is 20.

Answer: The mean is 62 and the standard deviation is 20 for the population.

Step-by-step explanation:

Let [tex]\mu[/tex] be the mean and [tex]\sigma[/tex] be the standard deviation .

Formula to calculate z-score corresponds to random variable x on normal curve.

[tex]Z=\dfrac{X-\mu}{\sigma},[/tex]  

Given : In a population distribution, a score of x=57 corresponds to z=-0.25 and a score of x=87 corresponds to z=1.25.

[tex]-0.25=\dfrac{57-\mu}{\sigma}\\\\-0.25\sigma=57-\mu---------(1)[/tex]

[tex]1.25=\dfrac{87-\mu}{\sigma}\\\\1.25\sigma=87-\mu----------(2)[/tex]

Eliminate equation(1) from equation(2), we get

[tex]1.50\sigma=30\\\\\Rightarrow\ \sigma=\dfrac{30}{1.5}=20[/tex]

Put value of [tex]\sigma=20[/tex] in (1)

[tex]1.25(20)=87-\mu\\\\87-\mu=25,\\\\\Rightarrow\mu=87-25=62.[/tex]

Hence, the mean is 62 and the standard deviation is 20 for the population.