Respuesta :

Answer:

Factored Form:

[tex] \Rightarrow (r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]

Step-by-step explanation:

Given: [tex]r^{27}-s^{30}[/tex]

We need to factor the expression

[tex]\Rightarrow (r^{9})^3-(s^{10})^3[/tex]

[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

[tex]a\rightarrow r^9[/tex]

[tex]b\rightarrow s^{10}[/tex]

[tex] (r^{9})^3-(s^{10})^3=(r^9-s^{10})((r^9)^2+r^9\cdot s^{10}+(s^{10})^2)[/tex]

[tex] \Rightarrow (r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]

Hence, In factored form [tex] \Rightarrow (r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]

Answer:

The answer is D

Step-by-step explanation:

edge 2020