Given the rectangle abcd shown below has a total area of 72. E is in the midpoint of bc and f is the midpoint of dc. What is the area of the inscribed triangle aef.

Respuesta :

Refer to the attached image.

Given the rectangle ABCD of length 'l' and height 'h'.

Therefore, CD=AB = 'l' and BC = AD = 'h'

We have to determine the area of triangle AEF.

Area of triangle AEF = Area of rectangle ABCD - Area of triangle ADF - Area of triangle ECF - Area of triangle ABE

Area of triangle ADF = [tex]\frac{1}{2}bh[/tex]

= [tex]\frac{1}{2}(DF \times AD)[/tex]

= [tex]\frac{1}{2}(\frac{l}{2} \times h)[/tex]

[tex]=\frac{lh}{4}[/tex]

Area of triangle ECF = [tex]\frac{1}{2}bh[/tex]

= [tex]\frac{1}{2}(CF \times CE)[/tex]

= [tex]\frac{1}{2}(\frac{l}{2} \times \frac{h}{2})[/tex]

[tex]=\frac{lh}{8}[/tex]

Area of triangle ABE = [tex]\frac{1}{2}bh[/tex]

= [tex]\frac{1}{2}(AB \times BE)[/tex]

= [tex]\frac{1}{2}(l \times \frac{h}{2})[/tex]

[tex]=\frac{lh}{4}[/tex]

Now, area of triangle AEF =

Area of rectangle ABCD - Area of triangle ADF - Area of triangle ECF - Area of triangle ABE

= [tex]72 - (\frac{lh}{4} + \frac{lh}{8} + \frac{lh}{4})[/tex]

= [tex]72 - (\frac{2lh+lh+2lh}{8})[/tex]

=[tex]72 - (\frac{5lh}{8})[/tex]

=[tex]72 - (\frac{5 \times 72}{8})[/tex]

[tex]=\frac{72 \times 8 - (5 \times 72)}{8}[/tex]

= 27 units

Therefore, the area of triangle AEF is 27 units.

Ver imagen pinquancaro