Respuesta :

[tex] 8x^3+27=0\\\\
8x^3=-27\\\\
x^3=-\dfrac{27}{8}\\\\
x=\sqrt[3]{-\dfrac{27}{8}}\\\\
x=-\dfrac{3}{2} [/tex]

f(x) = 8x³ + 27


To find the zeros equal the equation to 0


8x³ + 27 = 0

8x³ = -27

x³ = -27/8

x = [tex]\sqrt[3]{\frac{-27}{8}}[/tex]

x = [tex]\frac{-3}{2}[/tex]


This is the real root, but there are two other irrational roots.


By rule we know:


For f(z) = x³ the three solutions are:


x = [tex]\sqrt[3]{f(z)}[/tex]

x = [tex]\sqrt[3]{f(z)}.\frac{-1-\sqrt{3}i}{2}[/tex]

x = [tex]\sqrt[3]{f(z)}.\frac{-1+\sqrt{3}i}{2}[/tex]


Making some subs.


x = [tex]\frac{-3}{2}[/tex]

x = [tex]\frac{-3}{2}.\frac{-1-\sqrt{3}i}{2}[/tex]

x = [tex]\frac{-3}{2}.\frac{-1+\sqrt{3}i}{2}[/tex]


So, after all we have:


x = [tex]\frac{-3}{2}[/tex]

x = [tex]\frac{3+3\sqrt{3}i}{4}[/tex]

x = [tex]\frac{3-3\sqrt{3}i}{4}[/tex]