[tex]F=\dfrac{Gm_1m_2}{r^2}[/tex]
With the given values of [tex]F,G,m_1,r[/tex], we have
[tex]2.0\times10^{20}\,\mathrm N=\dfrac{\left(6.67\times10^{-11}\,\frac{\mathrm{Nm}^2}{\mathrm{kg}^2}\right)\left(5.98\times10^{24}\,\mathrm{kg}\right)m_2}{\left(3.8\times10^8\,\mathrm m\right)^2}[/tex]
Try dealing with the powers of 10 first: On the right, we have
[tex]\dfrac{10^{-11}\times10^{24}}{(10^8)^2}=\dfrac{10^{24-11}}{10^{16}}=10^{-3}[/tex]
Meanwhile, the other values on the right reduce to
[tex]\dfrac{6.67\times5.98}{3.8^2}\approx2.76[/tex]
Then taking units into account, we end up with the equation
[tex]2.0\times10^{20}\,\mathrm N=\left(2.76\times10^{-3}\,\dfrac{\mathrm N}{\mathrm{kg}}\right)m_2[/tex]
Now we solve for [tex]m_2[/tex]:
[tex]m_2=\dfrac{2.0\times10^{20}\,\mathrm N}{2.76\times10^{-3}\,\frac{\mathrm N}{\mathrm{kg}}}\approx0.725\times10^{20-(-3)}\,\mathrm{kg}[/tex]
[tex]m_2=7.25\times10^{22}\,\mathrm{kg}[/tex]
or, if taking significant digits into account,
[tex]m_2=7.3\times10^{22}\,\mathrm{kg}[/tex]