Respuesta :
[tex] \dfrac{2+2i}{1-i}=\dfrac{(2+2i)(1+i)}{1+1}=\dfrac{2+2i+2i-2}{2}=2i [/tex]
So, it's a) for sure. The other one is most likely e), but I'm not sure if it's true in general, that complex numbers are closed under division.
Answer:
Option and e are correct.
Step-by-step explanation:
Given Expression:
[tex]\frac{2+2i}{1-i}[/tex]
We simplify the given expression to select the correct option.
Consider,
[tex]\frac{2+2i}{1-i}[/tex]
[tex]=\frac{2+2i}{1-i}\times\frac{1+i}{1+i}[/tex]
[tex]=\frac{(2+2i)(1+i)}{(1-i)(1+i)}[/tex]
[tex]=\frac{2-2+i(2+2)}{(1)^2-(i)^2}[/tex]
[tex]=\frac{4i}{1-(-1)}[/tex]
[tex]=\frac{4i}{2}[/tex]
[tex]=2i[/tex]
2i is complex number.
Therefore, Option a and e are correct.