BRAINLY FOR THE FASTEST WITH GOOD EXPLANATIONS

So, when we're tasked with things like this, rewriting everything in terms of sine and cosine and combining fractions often trivializes things, so doing just that gives us:
[tex] \frac{\frac{1}{\cos{x}}-\frac{1}{\sin{x}}}{\frac{\cos{x}}{\sin{x}}-1}= \\\frac{\frac{=(\cos{x}-\sin{x})}{\cos{x}\sin{x}}}{\frac{\cos{x}}{\sin{x}}-\frac{\sin{x}}{\sin{x}}}=\\\frac{-(\cos{x}-\sin{x})}{\cos{x}\sin{x}}*\frac{\sin{x}}{\cos{x}-\sin{x}}=\\-\frac{1}{\cos{x}} [/tex]
So out expression is 1/cos(x).