We divide the figure into a triangle and a rectangle. The formula of an area of a triangle: [tex]A_t=\dfrac{ah}{2}[/tex] We have: [tex]a=5-1\dfrac{1}{3}=3\dfrac{2}{3}=\dfrac{11}{3}\ ft\\\\h=2\ ft[/tex] substiutute: [tex]A_t=\dfrac{\frac{11}{3}\cdot2}{2}=\dfrac{11}{3}\ ft^2[/tex] The formula of an area of a rectangle: [tex]A_r=wl[/tex] We have: [tex]w=5\ ft\\\\l=\dfrac{1}{3}\ ft[/tex] substitute [tex]A_r=5\cdot\dfrac{1}{3}=\dfrac{5}{3}\ ft^2[/tex] The area of the figure: [tex]A_F=A_t+A_r\\\\A_F=\dfrac{11}{3}+\dfrac{5}{3}=\dfrac{16}{3}=5\dfrac{1}{3}\ ft^2[/tex]