Respuesta :
The answer is choice A
===============================================
Work Shown:
[tex]-np - 5 \le 4(c-2)[/tex]
[tex]-np - 5+5 \le 4(c-2)+5[/tex] Adding 5 to both sides
[tex]-np \le 4(c-2)+5[/tex]
[tex]-np \le 4(c)+4(-2)+5[/tex] Distributive Property
[tex]-np \le 4c-8+5[/tex]
[tex]-np \le 4c-3[/tex]
[tex]n*(-p) \le 4c-3[/tex]
[tex]\frac{n*(-p)}{-p} \ge \frac{4c-3}{-p}[/tex] See note below
[tex]n \ge -\frac{4c-3}{p}[/tex]
So that's why the answer is choice A
Note: In this step, I divided both sides by -p. Dividing both sides of an inequality by a negative number will flip the sign. So that's why we go from a "less than or equal to" sign to a "greater than or equal to" sign.
===============================================
Work Shown:
[tex]-np - 5 \le 4(c-2)[/tex]
[tex]-np - 5+5 \le 4(c-2)+5[/tex] Adding 5 to both sides
[tex]-np \le 4(c-2)+5[/tex]
[tex]-np \le 4(c)+4(-2)+5[/tex] Distributive Property
[tex]-np \le 4c-8+5[/tex]
[tex]-np \le 4c-3[/tex]
[tex]n*(-p) \le 4c-3[/tex]
[tex]\frac{n*(-p)}{-p} \ge \frac{4c-3}{-p}[/tex] See note below
[tex]n \ge -\frac{4c-3}{p}[/tex]
So that's why the answer is choice A
Note: In this step, I divided both sides by -p. Dividing both sides of an inequality by a negative number will flip the sign. So that's why we go from a "less than or equal to" sign to a "greater than or equal to" sign.