Respuesta :
Answer:
[tex]Sin (0.6x) - Sin (0.4x) = 2 cos (0.5x) Sin (0.1x)[/tex]
Step-by-step explanation:
Given :sin(0.6x) - sin (0.4x)
To Find: which expression is equivalent to sin(0.6x) - sin (0.4x)
Solution:
Formula : [tex]Sin a- Sin b = 2 cos (\frac{a+b}{2}) Sin (\frac{a-b}{2})[/tex]
Now Using formula.
[tex]Sin (0.6x) - Sin (0.4x) = 2 cos (\frac{0.6x+0.4x}{2}) Sin (\frac{0.6x-0.4x}{2})[/tex]
[tex]Sin (0.6x) - Sin (0.4x) = 2 cos (\frac{1x}{2}) Sin (\frac{0.2x}{2})[/tex]
[tex]Sin (0.6x) - Sin (0.4x) = 2 cos (0.5x) Sin (0.1x)[/tex]
Hence [tex]Sin (0.6x) - Sin (0.4x) = 2 cos (0.5x) Sin (0.1x)[/tex]
So, Option B is true.