If (tan^3 theta -1) / (tan theta - 1) - sec^2 theta +1 = 0, find cot theta.
a. -1 b.0 c. 1 d. sec theta

Answer:
Option A. [tex]cot\theta = -1[/tex]
Step-by-step explanation:
[tex]\frac{tan^{3}\theta -1}{tan\theta -1}-sec^{2}\theta +1=0[/tex]
we have to the value of [tex]cot\theta[/tex]
We further solve the equation
[tex]\frac{(tan\theta -1)(tan^{2}\theta +1+tan\theta )}{(tan\theta -1)}-sec^{2}\theta+1=0[/tex] [a³- b³= (a-b)(a² + b²+ ab)]
[tex]sec^{2}\theta +tan\theta -sec^{2}\theta +1=tan\theta +1=0[/tex]
[tex]\frac{1}{cot\theta }=-1[/tex]
[tex]cot\theta = -1[/tex]
Therefore Option A. [tex]cot\theta = -1[/tex] is the answer.